破解就医停车难需要多方协作******
就医停车难、医院周边交通拥堵,为群众所诟病,亟待解决。这不仅需要医院、交通管理等部门进行治理,政府相关部门也应共同协作、多方发力,利用信息化优势,多措并举,从而改善患者的就医体验。
1月12日晚,参加北京市政协十四届一次会议的委员们陆续报到,北京市政协委员、北京市丰盛中医骨伤专科医院院长齐越峰带来《关于解决就诊停车难,缓解医院周边拥堵的提案》。
诸多问题导致患者就医停车难
作为医药卫生界的市政协委员,齐越峰在参政议政过程中,聚焦患者的停车问题。齐越峰谈道,随着北京市机动车保有量不断增加,驾车就医成为普遍现象,而在各大医院门口,经常出现就诊患者的车辆排成长龙、等待进入医院的景象,有时患者已经看完病,家属的车辆还未开进医院。齐越峰调研发现,诸多问题导致患者就医停车难。
首先,患者到医疗机构就诊存在潮汐现象。齐越峰在提案中指出,周一、周二上午就诊人数最为集中,医院周边路段此时也最容易堵车,社会车辆对就诊高峰不了解,更加剧了交通拥堵。其次,中心城区的医院由于历史原因,院内停车位有限,且难以扩容,开车就诊的人数与医院内部停车位明显不成比例。
此外,对于医院外的道路,医院在管理上无能为力,交管部门警力有限,依靠电子摄像头监控、违法停车贴条等办法,也极易引起患者不满,更有甚者将怨气指向医疗机构。
齐越峰介绍说,北京市曾在2014年到2016年出台一系列政策,鼓励社会资本进入医院停车场。但从实际情况来看,在北京市内的医院建设地下立体停车库,每个车位成本高达30万元左右,投资方积极性不高。
患者就诊时间过长,也导致医院内的车位使用率不高。齐越峰观察,患者到了医院后,经历取号、报到、就诊、拍片、取药、治疗等环节一般需要2-3小时。大医院有时患者较多,看病至少耗费一上午,有限的车位和单次就诊时间过长的矛盾更加剧了停车难。
交管和医院协作疏导成为破题关键
如何破解就医停车难?齐越峰在提案中建议,首先应由交通管理部门牵头,加大医院周边交通拥堵情况的指挥调度。
齐越峰梳理媒体报道发现,2022年北京市针对重大活动、重点时期开展了30余次交通综合协调调度,及时发布预警信息为市民出行提供参考,并取得较好的效果。“随着交通数据共享、指挥调度能力进一步提升,将医院预约就诊、动态就诊人数纳入交通运行监测平台,建立交通综合协调调度机制,可以让医院周边交通更加有序和通畅。”齐越峰说。
交通部门要加大信息化建设。齐越峰指出,利用百度或高德等APP及时发布医院就诊人数信息、院内停车位数据,以及医院周边道路的拥堵指数,在预约和就诊人数集中时段采取交通预警和分流绕行提示,让社会车辆尽早避开医院,医院周边的交通状况或将得到改善。
除了疏导车辆,齐越峰建议,医疗机构要继续深入开展分级诊疗、预约诊疗、检验和化验报告的数据化,优化患者就诊的各项服务流程,缩短患者在医院的驻留时间,减少患者不必要的就医出行,也可有效缓解停车难题。
齐越峰还谈道,政府牵头在城区医院附近合适区域,在不影响街区景观的前提下,可鼓励社会资本出资建设立体停车场,让患者在医院附近就近下车就医。
文/本报记者 崔毅飞
AI绘画的“小秘密”都在这一篇文章里******
有了AI,人人都可以是艺术家。AI绘画的出现,恰如瑞士艺术家保罗·克利所言:“艺术不是再现可见,而是使不可见成为可见。”经过20年左右的发展,目前基于不同类型或者模态元素的AI绘画发展情况不尽相同,发展最久的是“以图生图”,再到近期火爆的“文+图”生图。当然,也有团队已经研发出由语音生成图像的技术。
上传一张图片,或者输入一些简单的关键词,系统就能自动生成一张卡通图像……最近一段时间,AI绘画开始在互联网社交平台走红。
AI绘画,顾名思义就是利用人工智能进行绘画,是人工智能生成内容的典型应用场景之一。其主要原理是收集大量已有作品,通过算法对其内容和风格特征进行解析,最后再生成新的作品,所以算法是AI绘画的核心。
当前,“凭空”生成图像的AI绘画,其实也会动辄“翻车”:也许上一秒AI通过你的照片绘出的是一张充满艺术感的二次元画像,下一秒你的宠物猫、狗则可能被画成可爱少女或肌肉猛男。
事实上,AI绘画早已火爆全球。第一张公开展出的、由人工智能创作的绘画作品《埃德蒙·贝拉米的肖像》曾于2018年在佳士得拍卖行以43.25万美元成交,那是一张由机器学习了从14世纪到20世纪的1.5万张肖像画之后自动生成的一张肖像画作品。
AI绘画是如何实现“凭空”生图的?除了娱乐外,AI绘画还有哪些潜在的应用前景?
从“以图生图”到“语音生图”
2022年,由人工智能创作的《太空歌剧院》一度火出圈。在美国科罗拉多州举办的新兴数字艺术家竞赛中,《太空歌剧院》获得“数字艺术/数字修饰照片”类别一等奖。它的构图、配色以及画面的细节堪称精致。然而,这个作品的创作者不是艺术家,而是来自美国科罗拉多州的游戏设计师。
这位游戏设计师在一个名为“Midjourney”的AI创作工具里,先输入几个关键词,如光源、构图、氛围等,得到了100幅作品,再进行约80小时的修图修饰,最终选出3幅作品,最后把图像打印到画布上。
通过简单交互式对话在短时间内生成的“艺术”作品,让人类艺术家展开了一场关于“AI绘画作品参赛是否属于作弊”的争论。这场声势浩大的争论也令大众直观地意识到如今的AI绘画水平已经发展到了何种程度。
“人工智能在艺术方面的创作最早可以追溯到上个世纪末,当时的人工智能绘画技术叫作‘图像的风格化滤镜’。”中国科学院自动化研究所多模态人工智能系统全国重点实验室研究员董未名说,最初的AI绘画方法比较简单,比如一张普通的照片,通过一些图像处理的算法,把照片像素进行几何或者色彩上的变换,然后再调节不同参数,就可以模拟出类似油画或者水彩画的风格。
经过20年左右的发展,目前基于不同类型或者模态元素的AI绘画发展情况不尽相同,发展最久的是“以图生图”,再到近期火爆的“文+图”生图。当然,也有团队已经研发出由语音生成图像的技术。
AI绘画主要依靠三种技术模式实现
董未名介绍,目前AI绘画主要借助图像风格迁移技术、图文预训练模型和扩散模型实现。
“图像风格迁移技术指的是图像处理算法通过对输入的真实图像内容特征和对参考的艺术图像风格特征的提取,实现真实图像内容特征和艺术图像风格特征的融合,从而生成新的艺术图像。”董未名举例,如果将美国旧金山艺术宫的外景照片和印象派创始人莫奈绘制的作品,通过图像风格迁移技术进行融合,就能得到一张看起来像是由莫奈绘制的美国旧金山艺术宫的绘画作品。最初的AI绘画采用的正是这种技术。
不过,在董未名看来,图像风格迁移技术大多依赖的是生成式对抗网络(GAN)算法,它最大的问题是生成的绘画作品艺术性不强,笔触和构图让人觉得与真实的绘画有差距,所以长久以来,AI绘画一直“籍籍无名”。
当图像风格迁移技术还在挣扎于输出作品的审美问题时,图文预训练模型的出现,加速了AI绘画的崛起。
“依托图文预训练模型,只要输入一句话或者上传一幅风格明显的图片,算法就能将图像特征和文字特征‘对齐’。生成的绘画作品的内容特征和上传图片的内容相似,艺术性也比图像风格迁移技术生成的图片强很多。”董未名举例,比如支撑图文预训练模型的可对比语言—图像预训练(CLIP)算法,就是利用图文特征“对齐”的能力,再结合已有的生成模型,实现“以图生图”或者“图+文”生图。
不过,董未名坦言,图文预训练模型的推广也存在一些争议,有部分人认为,该模型在训练前期,需要用大量的图形处理器(GPU)进行数据训练,耗电量大、成本很高,而该模型的应用场景却不够清晰。但也有人认为,也许该模型未来可以打造为通用的人工智能模型,用它完成更多的算法作业,只是这还需要时间的验证。
诚然没有一项技术是完美的,这也为人类探究更先进的技术提供了无限动力。当下最流行的扩散模型便是其中之一。
“目前最新的AI绘画技术采用的就是扩散模型,这种模型可以把一个随机采样的噪声输入模型,然后尝试通过去噪来生成图像。”董未名表示,扩散模型也存在弱点,由于模型对图片内容识别的能力不足,或者难以完全理解识别文字的意义,以及训练数据的偏差,有时便会生成“四不像”的作品。此外,扩散模型生成图片的速度比较慢,目前还达不到实时生成图片。
互联网治理、元宇宙或潜藏应用前景
AI绘画目前的应用场景,更多聚焦于社交软件。近期在国内社交网络“火出天际”的AI绘画软件主要集中在小程序及App。随着AI绘画小程序的火爆,短视频平台抖音也迅速上线了AI绘画特效。同时,此前腾讯上线了“QQ小世界AI画匠”活动,百度也推出了首款AI艺术和创意辅助平台“文心一格”。
有了AI,人人都可以是艺术家。AI绘画的出现,恰如瑞士艺术家保罗·克利所言:“艺术不是再现可见,而是使不可见成为可见。”“AI现在已经完美实现了这一目标,人们可以通过机器计算来绘制出很多现实中见不到的场景。”董未名畅想,不远的将来,AI绘画或许还将展现更丰富的应用场景。
“现在网络上充斥着很多不良内容,这些内容为了逃避监管经常以绘画的形式出现,而当前很多内容识别模型对真实图片识别得很准确,但缺乏不良内容艺术作品的相关训练数据,所以对不良内容识别不准确。也许可以用AI绘画技术,积累不良内容艺术作品的数据,并用以训练识别模型,以提升互联网内容的安全监管能力和识别的准确率。”董未名建议。
在董未名看来,作为一种艺术呈现形式,AI绘画也将在元宇宙、设计、文旅等行业催生新的商业模式。例如AI绘画目前在AI辅助创作、短视频、影视制作和元宇宙等方面都有布局,因为这些赛道都离不开创意,AI绘画可以帮助创作者通过简单的特征输入,实现对其创意的预览,甚至可以直接进行创作。
不过,董未名并不讳言,当下AI绘画仍然存在版权争议问题。AI绘画的核心是模型,而训练模型需要使用大量图像、文本数据。对于未经授权的图片,经过运算之后所生成的图像版权归属尚难界定。“有的画家风格特别明显,如果用画家的画去训练算法模型生成作品,那最后的版权属于谁呢?”董未名提出的问题,正是多数AI绘画作品所面临的现实问题。
AI绘画掀起了一场资本的群体狂欢,希望有一天它能走出“照猫画虎”的尴尬,真正服务艺术创作、创造更多价值。(科技日报记者 金凤)
(文图:赵筱尘 巫邓炎)